ARE ROGUE WORLDS THE ULTIMATE ABODE FOR LIFE?

The search for extraterrestrial life has captivated humanity for centuries. Countless questions arise in our quest to discover if we are alone in the vast universe. The Drake Equation, a mathematical formula introduced by astronomer Frank Drake in 1961, attempts to estimate the number of civilizations within our Milky Way Galaxy. However, recent scientific discoveries have unveiled a new intriguing possibility – rogue worlds. These wandering bodies, expelled from their original solar systems, may hold the potential for harboring life. In this blog post, we will explore the fascinating intersection of the Drake Equation and the enigmatic realm of rogue worlds, exploring the tantalizing notion of life beyond our home planet.

The original form of the equation is the following:

N = R* f(p) n(e) f(i) f(l) f (c) L

• N is the number of civilizations trying to communicate with us right now;

• R* is the rate of star formation in stars per year;

• f(p) is the fraction of those stars which have planetary systems;

• n(e) is the number of Goldilocks (i.e., Earth-type) planets in a planetary system);

• f(l) is the fraction of habitable planets that are inhabited;

 f(i) is the fraction of inhabited planets that possess intelligent technological civilizations;

• f (c) is the fraction of intelligent technological civilizations that choose to emit detectable signals;

• L is the length of time signals will be sent.

The first three factors are astronomical, the fourth and fifth are biological, and the last two factors are social. There are several issues with the equation. Among these:

(1) The uncertainties are large enough for the astronomical factors and increase as one progresses from the astronomical to the biological to the social.

(2) Most factors depend on theoretical insights of star and planet formation, new discoveries about exoplanets, and varying subjective opinions on the evolution of life and intelligence. The presumed longevity of civilization must also be taken into account.

(3) The equation has many hidden assumptions: a uniform star formation rate (SFR) over the Galaxy’s lifetime and a steady state of civilization birth and death. 

(4) No matter what value one chooses for R*, the assumption is always that a habitable planet must have a star. However, rogue worlds (bodies that have been thrown out of their own nascent solar system) wander around the Galaxy unattached to a star.

This last item has recently awakened great interest in the scientific community.

Theoretical calculations (Imagined Life, by James S. Trefil and Michael Summers, 2019) suggest that:

“[…] the number of rogues might be between twice and thousands of times the number of conventional planets. Interstellar space must be littered with them!”

Also, rogue planets need not be uninteresting ice balls with no life and energy. Lacking direct radiation from a star, a world can be heated by the residual power from its formation and the radioactive decay of elements in its interior. If provided with one or more moons, the planet can draw energy from a process known as tidal heating (which is responsible for the subsurface oceans on some of Jupiter and Saturn’s moons).

All in all, rogue planets can be compared to (Imagined Life by James S. Trefil and Michael Summers, 2019):

“[…] houses whose lights have been turned off but whose furnaces are still operating.”

Interestingly, rogue planets had been predicted as early as the 1930s by American horror and S.F. author Howard Phillips Lovecraft.

In his short story: The Haunter of the Dark, he wrote:

“[…] remember Yuggoth, and more distant Shaggai, and the ultimate void of the black planets… […].”

When the planet Pluto had just been discovered by Clyde Tombaugh (1906-97) at Lowell Observatory (Flagstaff, Arizona), he wrote another short story: The Whisperer in Darkness.

Here are a few quotes: 

“[…] Their main immediate abode is a still undiscovered and almost lightless planet at the very edge of our solar system – beyond Neptune and the ninth in distance from the [S]un. It is, as we have inferred, the object mystically hinted at as ‘Yuggoth’ in certain ancient and forbidden writings; […] I would not be surprised if astronomers become sufficiently sensitive to these thought-currents to discover Yuggoth when the Outer Ones wish them to do so. But Yuggoth, of course, is only the stepping-stone. The main body of the beings inhabits strangely organised abysses wholly beyond the utmost reach of any human imagination.”

And also:

“[…] Those wild hills are surely the outpost of a frightful cosmic race – as I doubt all the less since reading that a new ninth planet has been glimpsed beyond Neptune, just as those influences had said it would be glimpsed. Astronomers, with a hideous appropriateness they little suspect, have named this thing ‘Pluto.’ I feel, beyond question, that it is nothing less than nighted Yuggoth […].”

What would life be like on a rogue planet?

According to Imagined Life, by J.S. Trefil and M. Summers:

“It’s dark. Not midnight-on-a-side-street dark, but trapped-in-a-cave dark. And no wonder—there’s no sun in the sky, for this is a rogue world, one that circles no star. There is a moon up there somewhere, but without a source of light for it to reflect, it’s just a darker patch in the sky. Whatever life forms live on this planet had better be able to see in infrared because there’s simply no other light to be had. You’re wearing infrared sensors, fortunately, and you spot a few of these creatures scurrying back to the planet’s subterranean tunnels, where they can bask in the heat emanating from the planet’s interior. […]”

Life on a dark planet has been described by British author Arthur C. Clarke in his 1950 short story: A Walk in the Dark:

“[…] Here at the edge of the Galaxy, the stars were so few and scattered that their light was negligible. […]” 

“[…] Here at this outpost of the Universe, the sky held perhaps a hundred faintly gleaming points of light, as useless as the five ridiculous moons on which no one had ever bothered to land. […]” 

“[…] No one could deny that the tunnels out in the wasteland were rather puzzling, but everyone believed them to be volcanic vents. Though, of course, life often crept into such places. With a shudder, he remembered the giant polyps that had snared the first explorers of Vargon III […]

The Drake Equation is not meant to give a precise answer but to stimulate scientific discussion and exploration. It is based on several factors that affect the likelihood of finding intelligent life, such as the rate of star formation, the fraction of stars with planets, the fraction of planets suitable for life, and the fraction of civilizations that develop radio technology. Each factor is multiplied by the previous one, resulting in the number of detectable civilizations in our galaxy. However, many of these factors are uncertain, and different assumptions can lead to different outcomes. For example, some estimates suggest that there could be millions of civilizations in our Galaxy, while others suggest that we might be the only one.

According to a recent study, under the strictest set of assumptions, where life forms between 4.5 billion and 5.5 billion years after star formation, there are likely between four and 211 civilizations in the Milky Way today capable of communicating with others, with 36 the most likely figure. Another study yielded two main results: an optimistic one and a pessimistic one. In the optimistic situation, the researchers suggested the aforementioned 42,777 communicating extraterrestrial intelligent civilizations (CETIs) with an error margin of plus 267 and minus 369, and they would need to survive 2,000 years on average to communicate with us.

The Drake Equation is a fascinating way to explore the possibilities of extraterrestrial life and communication. It helps us understand what we know and don’t know about our place in the universe. It also inspires us to keep searching for signs of other civilizations and to wonder what they might be like.

Read more about this topic in this post and this other post.

Great Sci-Fi Novels 1: Isaac Asimov’s ‘Foundation’

A compelling SF worldbuilding cannot be done without delivering some backstory at the novel’s beginning. This must be done as early as possible without giving away too much and trying not to bore the readers. 

According to On Writing and Worldbuilding, Volume I, by Timothy Hickson:

“[In] Harry Potter and the Philosopher’s Stone […] J.K. Rowling introduces every major concept and virtually every major character in the story with well-hidden expository writing.”

With all due respect for J.K. Rowling and the Harry Potter series, I don’t agree that ‘expository writing’ must necessarily be hidden.

I can quote a few great SF classics where a nice chunk of information is in plain view right in the first page’s heading. It may take the form of a journal excerpt, a quotation from an encyclopedia, or even an interview with one of the secondary characters.

Here are a few examples: 

(1) FoundationIsaac Asimov:

“HARI SELDON— … born in the 11,988th year of the Galactic Era; died 12,069. […] Born to middle-class parents on Helicon, Arcturus sector […].” From the ENCYCLOPEDIA GALACTICA.

And a few lines below, just after the incipit:

“[…] There were nearly twenty-five million inhabited planets on the Galaxy then, and not one but owed allegiance to the Empire whose seat was on Trantor.”

From these few words, the reader can already learn a lot about the tone and setting of the story:

— It’ll be about a Galactic Empire. The plot will unfold in a nation-state encompassing most of the Galaxy’s habitable planets.

In technical jargon, a Galactic Empire is what astronomers call a Kardashev Type III civilization, which is “a civilization in possession of energy on the scale of its galaxy” (M.M. Cirkovic, 2015);

— It’ll be about a long-lasting human civilization. Isaac Asimov’s future human society survived the so-called Great Filter. As explained in the book Exoplanets by Michael Summers and James Trefil:

“[…] there really doesn’t seem to be anything at all special about the way that life developed on Earth, and given the abundance of planets out there, there is no reason that complex life shouldn’t be quite common. On the other hand, from what we know about the process of evolution, we can expect the winners of the evolutionary game on other planets to be no more benevolent than Homo Sapiens. In this case, the [coming] Great Filter is easy to see. Once an aggressive, warlike species discovers science, they are likely to turn their discoveries against one another and, in essence, wipe themselves out. […]”

 It’ll involve interstellar and faster-than-light (FTL) travel. Isaac Asimov’s Foundation is loosely based on Gibbon‘s History of the Decline and Fall of the Roman Empire. In his monumental work, the XVII century English historian stressed Roman roads’ importance in ensuring efficient communications between the central authority and the dozens of provinces of an enormous Empire. The Galactic analog of Roman roads is, of course, hyperspace. Asimov was one of the first SF authors to use this plot device to sidestep the long time required for interstellar journeys.

Find out more about relaying the backstory in a novel in this post and this post.